# Radio decay dating dating blogger erin meanley glamour

We end up with a solution known as the "Law of Radioactive Decay", which mathematically is merely the same solution that we saw in the case of light attenuation.We get an expression for the number of atoms remaining, N, as a proportion of the number of atoms N, where the quantity l, known as the "radioactive decay constant", depends on the particular radioactive substance.Current research involves a theoretical description of X-ray beam spectra.The nucleus of carbon 14 contains 6 protons and 8 neutrons, as opposed to the 6 and 6 found in ordinary carbon 12.Knowing the level of activity of a sample of organic material enables us to deduce how much C-14 there is in the material at present.

From the equation above, taking logarithms of both sides we see that lt = -ln(N/N.

He graduated in 1977 with a BSc Honours in Applied Physics from the University of Lancaster, and obtained an MSc in Medical Physics from the University of Leeds in 1987.

He is interested in various theoretical aspects of radiation and radiological physics, with an interest in mathematical modelling in general.

Exactly the same treatment can be applied to radioactive decay.

However, now the "thin slice" is an interval of time, and the dependent variable is the number of radioactive atoms present, N(t). If we have a sample of atoms, and we consider a time interval short enough that the population of atoms hasn't changed significantly through decay, then the proportion of atoms decaying in our short time interval will be proportional to the length of the interval.

Here isotopes with longer half lives are used, which enables dating of geological formations and rocks. For example, in lava form, molten lead and Uranium-238 (standard isotope) are constantly mixed in a certain ratio of their natural abundance.